MNE-Python offers a verity of multiple dipole localization methods for evoked EEG/MEG data.
Of those, we are going to compare the preformance of 2 beamformer methods - RAP MUSIC and AP as currently implemented in the MNE-Python package.
The functions will be set to find 2 active sources, simulated with varying SNR and signal correlation (between the two signals simulated) across different samples, using the evoked time-series given by the forward model (built with MNE-Python).
The results will be partially visualized across 2 section addressing 2 modes of modeling - freely oriented dipoles model and fixed oriented dipoles model.
About the metrics used:
-Distance: the average distance between the estimated active dipole and the simulated active dipole.
-Orientation correlation: the correlation between the estimated orientation assign to each estimated dipole and the true orientation of the simulated dipoles (only relevant for the freely oriented case).
-Relative Tolerance: given an estimation on the dipoles localization (and orientation) an updated gain can be computed considering the contribution of the estimated dipoles alone. Substracting the evoked data projected by the updated gain from the original evoked data gives the evoked data that couldn't be explained with the dipoles chosen, namely, the residual. The relative tolarence is the Frobenius norm of the residual divided by the Frobenius norm of the simulated evoked data.
About the simulation:
Given a forward model localizing a set of dipoles, 2 are randomly chosen, one from each lobe, for each sample. using an mne.Evoked object, provided by the MNE-Python data folders, we produce 2 time series of dipole activation, modeled as cosines, correlated to a chosen extent. Noise is added using the noise covariance matrix given by MNE-Python's data folders. Then the simulated data amplitude is calibrated to a target SNR. The entire process can be reproduced following the code in the reproducing simulation data section. Readily available data sets with simulation results are featured on current folder ("APvRAP_fixed.h5" and "APvRAP_free.h5") containing the following:
-SNR = [-15,-10,-5,0,5,10,15].
-Inter-source correlation = [0.5,0.7,0.85,0.9,0.95,1].
-No. of samples: ~550 of each (SNR,Sig. Corr.) combination for each Algorithmic method tested.
Note:
most of the functions used for simulation and visualization are contained inside aux_func.py .
MNE-Python package is required.
%matplotlib inline
import os.path as op
import numpy as np
from scipy import linalg
import plotext as pt
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import mne
from mne.datasets import testing
from aux_func import *
# loading free oriented simulation data
save_path = "APvRAP_free.h5"
test_data_free = pd.read_hdf(save_path, 'test_data')
test_data_free.describe()
SNR | Sig_corr | Simulated_dis | Pos_err_1 | Pos_err_2 | Ori_corr_1 | Ori_corr_2 | rel_tol_mag | rel_tol_grad | |
---|---|---|---|---|---|---|---|---|---|
count | 6.754700e+04 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 |
mean | -7.831584e-02 | 0.820517 | 0.085119 | 0.021649 | 0.023825 | 0.000813 | 0.070287 | 0.477779 | 0.650193 |
std | 9.158665e+00 | 0.159144 | 0.025336 | 0.030112 | 0.034668 | 0.802806 | 0.807210 | 0.286045 | 0.258582 |
min | -1.500000e+01 | 0.480005 | 0.007377 | 0.000000 | 0.000000 | -1.000000 | -1.000000 | 0.027581 | 0.154803 |
25% | -1.000000e+01 | 0.701570 | 0.067436 | 0.000000 | 0.000000 | -0.887969 | -0.846887 | 0.222706 | 0.477438 |
50% | 1.928655e-15 | 0.860073 | 0.086330 | 0.008129 | 0.000000 | 0.000612 | 0.200787 | 0.431749 | 0.700254 |
75% | 5.000000e+00 | 0.949867 | 0.103158 | 0.034557 | 0.035862 | 0.884159 | 0.929111 | 0.747835 | 0.897101 |
max | 1.500000e+01 | 1.000000 | 0.166555 | 0.162747 | 0.164200 | 1.000000 | 1.000000 | 1.235913 | 1.349485 |
sig_corr_seeds = [0.5,0.7,0.85,0.9,0.95,1]
snr_seeds = [-15,-10,-5,0,5,10,15]
tmp_corr_data, ap_heatmap_prep, rap_heatmap_prep = prep_data(test_data_free, sig_corr_seeds, snr_seeds)
additional_info = {
'set_attr':'SNR',
'ori':'freely oriented',
'xlabel':'Inter-source correlation'
}
# SNR = -5
fig, ax = plot_line_by_attr_free_ori(
tmp_corr_data, "SNR_bin", "Sig_corr_bin", -5, additional_info=additional_info)
# SNR = 0
fig, ax = plot_line_by_attr_free_ori(
tmp_corr_data, "SNR_bin", "Sig_corr_bin", 0, additional_info=additional_info)
# SNR = 5
fig, ax = plot_line_by_attr_free_ori(
tmp_corr_data, "SNR_bin", "Sig_corr_bin", 5, additional_info=additional_info)
additional_info = {
'set_attr':'Inter-source correlation',
'ori':'freely oriented',
'xlabel':'SNR'
}
# Signal Correlation = 0.5
fig, ax = plot_line_by_attr_free_ori(
tmp_corr_data, "Sig_corr_bin", "SNR_bin", 0.5, additional_info=additional_info)
# Signal Correlation = 1.0
fig, ax = plot_line_by_attr_free_ori(
tmp_corr_data, "Sig_corr_bin", "SNR_bin", 1.0, additional_info=additional_info)
#heatmap difference : Alternating Projections - RAP MUSIC
fig, ax = plot_heatmap_diff_free_ori(ap_heatmap_prep, rap_heatmap_prep)
# loading fixed oriented simulation data
save_path = "APvRAP_fixed.h5"
test_data_fixed = pd.read_hdf(save_path, 'test_data')
test_data_free.describe()
SNR | Sig_corr | Simulated_dis | Pos_err_1 | Pos_err_2 | Ori_corr_1 | Ori_corr_2 | rel_tol_mag | rel_tol_grad | |
---|---|---|---|---|---|---|---|---|---|
count | 6.754700e+04 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 | 67547.000000 |
mean | -7.831584e-02 | 0.820517 | 0.085119 | 0.021649 | 0.023825 | 0.000813 | 0.070287 | 0.477779 | 0.650193 |
std | 9.158665e+00 | 0.159144 | 0.025336 | 0.030112 | 0.034668 | 0.802806 | 0.807210 | 0.286045 | 0.258582 |
min | -1.500000e+01 | 0.480005 | 0.007377 | 0.000000 | 0.000000 | -1.000000 | -1.000000 | 0.027581 | 0.154803 |
25% | -1.000000e+01 | 0.701570 | 0.067436 | 0.000000 | 0.000000 | -0.887969 | -0.846887 | 0.222706 | 0.477438 |
50% | 1.928655e-15 | 0.860073 | 0.086330 | 0.008129 | 0.000000 | 0.000612 | 0.200787 | 0.431749 | 0.700254 |
75% | 5.000000e+00 | 0.949867 | 0.103158 | 0.034557 | 0.035862 | 0.884159 | 0.929111 | 0.747835 | 0.897101 |
max | 1.500000e+01 | 1.000000 | 0.166555 | 0.162747 | 0.164200 | 1.000000 | 1.000000 | 1.235913 | 1.349485 |
sig_corr_seeds = [0.5,0.7,0.85,0.9,0.95,1]
snr_seeds = [-15,-10,-5,0,5,10,15]
tmp_corr_data, ap_heatmap_prep, rap_heatmap_prep = prep_data(test_data_fixed, sig_corr_seeds, snr_seeds)
additional_info = {
'set_attr':'SNR',
'ori':'fixed orientation',
'xlabel':'Inter-source correlation'
}
# SNR = -5
fig, ax = plot_line_by_attr_fixed_ori(
tmp_corr_data, "SNR_bin", "Sig_corr_bin", -5, additional_info=additional_info)
# SNR = 0
fig, ax = plot_line_by_attr_fixed_ori(
tmp_corr_data, "SNR_bin", "Sig_corr_bin", 0, additional_info=additional_info)
# SNR = 5
fig, ax = plot_line_by_attr_fixed_ori(
tmp_corr_data, "SNR_bin", "Sig_corr_bin", 5, additional_info=additional_info)
additional_info = {
'set_attr':'Inter-source correlation',
'ori':'fixed orientation',
'xlabel':'SNR'
}
# Signal Correlation = 0.5
fig, ax = plot_line_by_attr_fixed_ori(
tmp_corr_data, "Sig_corr_bin", "SNR_bin", 0.5, additional_info=additional_info)
# Signal Correlation = 1.0
fig, ax = plot_line_by_attr_fixed_ori(
tmp_corr_data, "Sig_corr_bin", "SNR_bin", 1.0, additional_info=additional_info)
#heatmap difference : Alternating Projections - RAP MUSIC
fig, ax = plot_heatmap_diff_fixed_ori(ap_heatmap_prep, rap_heatmap_prep)
data_path = testing.data_path(download=False)
fname_ave = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
evoked, noise_cov = get_data(fname_ave, fname_cov, ch_decim=16)
fwd_free = mne.read_forward_solution(fname_fwd)
fwd_free = mne.pick_channels_forward(fwd_free, evoked.ch_names)
# forward_surf_ori = mne.convert_forward_solution(fwd_free, surf_ori=True)
fwd_fixed = mne.convert_forward_solution(fwd_free, force_fixed=True,surf_ori=True, use_cps=True)
Reading C:\Users\yuval\mne_data\MNE-testing-data\MEG\sample\sample_audvis-ave.fif ... Read a total of 4 projection items: PCA-v1 (1 x 102) active PCA-v2 (1 x 102) active PCA-v3 (1 x 102) active Average EEG reference (1 x 60) active Found the data of interest: t = -199.80 ... 499.49 ms (Left Auditory) 0 CTF compensation matrices available nave = 55 - aspect type = 100 Projections have already been applied. Setting proj attribute to True. Applying baseline correction (mode: mean) Removing projector <Projection | Average EEG reference, active : True, n_channels : 60> 366 x 366 full covariance (kind = 1) found. Read a total of 4 projection items: PCA-v1 (1 x 102) active PCA-v2 (1 x 102) active PCA-v3 (1 x 102) active Average EEG reference (1 x 60) active MAG regularization : 0.1 GRAD regularization : 0.1 Reading forward solution from C:\Users\yuval\mne_data\MNE-testing-data\MEG\sample\sample_audvis_trunc-meg-eeg-oct-4-fwd.fif... Reading a source space... Computing patch statistics... Patch information added... [done] Reading a source space... Computing patch statistics... Patch information added... [done] 2 source spaces read Desired named matrix (kind = 3523) not available Read MEG forward solution (498 sources, 306 channels, free orientations) Desired named matrix (kind = 3523) not available Read EEG forward solution (498 sources, 60 channels, free orientations) Forward solutions combined: MEG, EEG Source spaces transformed to the forward solution coordinate frame 20 out of 366 channels remain after picking Average patch normals will be employed in the rotation to the local surface coordinates.... Converting to surface-based source orientations... [done]
example - generating 2 randomized sources ( taken from aux_func.simu_data() )
corr = 0.5
Q = 2
T = len(evoked.times)
min_t = np.min(evoked.times)
max_t = np.max(evoked.times)
while True:
Y = gen_signals_correlated_cos(corr, Q, T, min_t, max_t)
corr_test = np.abs((Y[0]/np.linalg.norm(Y[0]))@(Y[1].T/np.linalg.norm(Y[1])))
if corr-0.02 < corr_test < corr+0.02:
break
data = np.array([Y[0], Y[1]])
sns.lineplot(data.T, legend=False)
<AxesSubplot: >
test_data_free = run_simulation(
fwd_fixed, noise_cov, evoked, fwd_free = fwd_free, verbose = False)
test_data_fixed = run_simulation(
fwd_fixed, noise_cov, evoked, verbose = False)